Für viele Nichtphysiker ist dies unvorstellbar. Forscher haben die Verschmelzung zweier Schwarzer Löcher gemessen – in nahezu unmöglicher Entfernung.
Forscher in der Hälfte des Universums haben die bislang massivste Fusion von Schwarzen Löchern beobachtet. Das Ligo-Observatorien in den USA und Virgo in Italien zeichnete die Gravitationswellen vom Absturz zweier Gravitationsmonster mit fast 66- und 85-facher Sonnenmasse am 21. Mai 2019 auf.
Es geschah vor ungefähr sieben Milliarden Jahren
Das resultierende Schwarze Loch mit 142 Sonnenmassen ist das erste der jemals gesehenen Massenmassen, berichten die Forscher, die ihre Messungen in zwei Fachartikeln in den Magazinen „Physical Review Letters“ und „Astrophysical Journal Letters“ präsentieren.
Die Fusion fand vor etwa sieben Milliarden Jahren statt, als das Universum nur halb so alt war wie heute. Es setzte eine Energie frei, die nach Albert Einsteins Masse-Energie-Äquivalent E = mc ^ 2 etwa acht Sonnenmassen entspricht.
Dies bedeutet, dass ungefähr die achtfache Masse unserer Sonne als Energie in die Erzeugung von Gravitationswellen floss. Dies führte dazu, dass die Raumzeit so stark vibrierte, dass sie heute noch in einer Entfernung von etwa 16 Milliarden Lichtjahren auf der Erde nachweisbar war.
Somit ist die Fusion nicht nur das massereichste, sondern auch das am weitesten entfernte Ereignis, das bisher von den Gravitationswellendetektoren aufgezeichnet wurde.
Das Signal dauerte nur eine Zehntelsekunde
„Dies ist nichts anderes als das Zwitschern, das wir normalerweise beobachten“, sagte der Jungfrau-Wissenschaftler Nelson Christensen in einer Pressemitteilung. „Das ist mehr etwas, das Angst macht, und es ist das massivste Signal, das Ligo und Virgo gesehen haben.“ Die Gravitationswellenobservatorien haben „ihre bisher fettesten Fische gefangen“, sagte das an der Entdeckung beteiligte Max-Planck-Institut. Gravitationsphysik in Potsdam und Hannover.
Das Signal mit der Katalognummer GW190521 dauerte nur etwa eine Zehntelsekunde und zeigte nur zwei spiralförmige Trajektorien der Schwarzen Löcher, bevor es schließlich verschmolz.
„Trotz der kurzen Dauer konnten wir zeigen, dass das Signal mit dem übereinstimmt, was wir von der Verschmelzung von Schwarzen Löchern erwarten – wie von Einsteins allgemeiner Relativitätstheorie vorhergesagt“, sagte Alessandra Buonanno, Direktorin des Max-Planck-Instituts für Gravitationsphysik. „Uns wurde klar, dass wir als erste Zeuge der Geburt eines mittelgroßen Schwarzen Lochs waren, von dem ein Elternteil höchstwahrscheinlich das Ergebnis einer früheren Verschmelzung eines binären Systems war.“
► Mittlere Schwarze Löcher haben die 100- bis 100.000-fache Masse unserer Sonne. Die Fusion liefert den ersten eindeutigen Beweis für ein Schwarzes Loch in dieser Klasse. Während bei Sternexplosionen kleinere Schwarze Löcher entstehen, befinden sich größere in den Zentren von Galaxien wie unserer Milchstraße, wo sie große Mengen an Materie absorbiert haben.
Astrophysiker können diese Masse nicht erklären
Die Massen der beiden Schwarzen Löcher, deren Verschmelzung inzwischen aufgezeichnet wurde, bereiten Astrophysikern immer noch Kopfschmerzen, da sich insbesondere ein Schwarzes Loch mit 85 Sonnenmassen nicht bilden kann.
Nach der Theorie kollabieren bei einer Supernova-Explosion nur Sterne bis zu etwa 130 Sonnenmassen zu Schwarzen Löchern, die dann maximal 65 Sonnenmassen haben sollten. Schwerere Sterne verlieren durch wiederholte heftige Ausbrüche so viel Masse, dass sie nur ein Schwarzes Loch mit weniger als 65 Sonnenmassen erzeugen.
Noch massereichere Sterne mit mehr als 200 Sonnenmassen könnten theoretisch am Ende ihrer Existenz in ein Schwarzes Loch fallen, das dann mehr als 120 Sonnenmassen haben sollte. Es sollten also keine Schwarzen Löcher zwischen 65 und 120 Sonnenmassen vorhanden sein. Die Wissenschaftler halten es für sehr wahrscheinlich, dass der größere der beiden Vorläufer selbst das Ergebnis einer Verschmelzung entsprechend kleinerer Schwarzer Löcher war.